A Class of PDEs with Nonlinear Superposition Principles
نویسندگان
چکیده
Through assuming that nonlinear superposition principles NLSPs are embedded in a Lie group, a class of 3rd-order PDEs is derived from a general determining equation that determine the invariant group. The corresponding NLSPs and transformation to linearize the nonlinear PDE are found, hence the governing PDE is proved C-integrable. In the end, some applications of the PDEs are explained, which shows that the result has very subtle relations with linearization of partial differential equation.
منابع مشابه
Dynamic Analysis of Linear Structural Systems with Nonlinear Vibrating Isolators Using Mode Superposition Method
متن کامل
Dynamic Analysis of Linear Structural Systems with Nonlinear Vibrating Isolators Using Mode Superposition Method
متن کامل
A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملA block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations
A parallel time integration method for nonlinear partial differential equations is proposed. It is based on a new implementation of the Paraexp method for linear partial differential equations (PDEs) employing a block Krylov subspace method. For nonlinear PDEs the algorithm is based on our Paraexp implementation within a waveform relaxation. The initial value problem is solved iteratively on a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012